

AN111: AVR Programming

Content

- Introduction
- Hardware
- Installation
- Setup
- Programming AVRs
- Changing the fuse bits
- board.hex

Introduction

This application note describes the programming of AVRs with the ATMEL Studio. It is tailored to the DMX Transceiver, but should also be applicable in other designs.

Hardware

The AVRISPmkII from ATMEL (now Microchip) is a great USB programmer. There are also numerous other ISP programmers for AVR microcontrollers that are claimed to be compatible with the ATMEL Studio. Please refer to the installation instructions of the respective manufacturer.

Figure 1: ISP-Programmer (AVRISPmkII)

A DMX Transceiver of Rev. 3.2 or above can be connected directly.

The connection to a DMX Transceiver of Rev. 3.01 and below is made via an adapter cable. The supply voltage VCC was not put out on the ISP connector and must be obtained separately from the PCB.

Figure 2: adapter cable for the DMX-Transceiver Rev. 3.01

Installation

First download the ATMEL Studio and follow the installation instructions: <u>https://www.microchip.com/mplab/avr-support/avr-and-sam-downloads-archive</u>

Setup

First connect the ISP programmer to the computer. The LEDs of the AVRISPmkII should light up as shown in figure 1 - otherwise the installation of the driver was not successful.

Then connect the ISP programmer to the DMX transceiver using the adapter cable and connect the DMX transceiver to a supply voltage between 9V and 12V. Both LEDs of the AVRISPmkII should now light up green.

If one LED remains red, VCC was not detected: Please check whether 5V are present between + and GND (cf. fig. 3):

Figure 3: checking VCC

If a LED flashes orange, the AVRISPmkII has detected an error in the connection. Please check the adapter cable again carefully.

Alternatively the programmer might be connected in the wrong orientation.

Now open the ATMEL Studio:

If you want to transfer an existing firmware to the AVR, select "Device Programming" directly (cf. Fig. 4).

If you want to modify a firmware, select "Open Project...".

Figure 4: Device Programming

) 🙀 🕻

Select your ISP programmer as tool, the ATmega8515 as device and ISP as interface and confirm by clicking on Apply:

Device Programr	ning					?	×
Tool AVRISP mkll Y	Device	Interface ISP Apply	Device signature not read Read	Target Voltage	₽		

Since most AVRs have a default clock rate of 1 MHz, the ISP clock should initially operate at 125 kHz:

AVRISP mkll (0000B0002915) - Device Programming				
Tool Device AVRISP mkll Y ATmega8	Interface 15 • ISP • Apply	Device signature 0x1E9306 Read	Target Voltage	
Interface settings	SP Clock			
Tool information				125 kHz
Device information		_	Reset t	o default clock
Oscillator calibration	The ISP Clock frequency must b	e lower than 1/4 of frequen	cy the device is operating o	n.
Memories	(Set
Fuses				Sec
Lock bits				
Production file				

Figure 6: ISP Clock

Finally, check the settings by reading the device signature. The target voltage of the DMX Transceiver should be approx. 5.0V.

Figure 5: Settings

Programming AVRs

- 1. Download a project from Henne's Sites and unzip the archive.
- 2. Select "Memories" on the left side.
- 3. Open the *.hex-file for the flash memory from the debug folder of the project.
- 4. Flash the AVR by clicking on "Program".

Tool Device Interface Device signature Target Voltage AVRISP mkll ~ ATmega8515 ~ ISP ~ Apply 0x1E9306 Read 4,8 V Read # Interface settings Device Erase Chip ~ Erase now #	AVRISP mkll (0000B0002915) - Device Programming				
Interface settings Tool information Device information Oscillator calibration Memories Fuses Lock bits Production file EEPROM (512 bytes) Yerify Read					
Wernores Verify Flash after programming Program Verify Kead Fuses	Tool information Device information	Erase Chip V Erase now Flash (8 KB)	est.he 🎽 🛄		
Production file	Fuses	Verify Flash after programming	Read		
✓ Verify EEPROM after programming ✓ Advanced		Verify EEPROM after programming	 Read 		

Figure 7: Flashing the Firmware

Changing the fuse bits (without bootloader)

The internal RC oscillator (1MHz) is selected as the default clock source. Since this is too slow for DMX, the crystal (8MHz) has to be selected. This is done by adjusting the fuse bits as follows:

- 1. Select "Fuses" on the left side.
- 2. Read the current settings.
- 3. Change the bits according to figure 8 (0x9D; 0x3F).
- 4. Write back the fuse bits.

AVRISP mkll (0000B0002915) - Device Programming ? \times Device Interface Device signature Target Voltage Tool ~ Apply AVRISP mkll ~ ATmega8515 ISP • 0x1E9306 Read 4,9 V Read Ö Fuse Name Value Interface settings HIGH.S8515C Tool information HIGH.WDTON ✓ Device information HIGH.SPIEN \checkmark Oscillator calibration HIGH.EESAVE Memories **WHIGH.BOOTSZ** Boot Flash size=256 words Boot address=\$0F00 ~ Fuses HIGH.BOOTRST Lock bits **HIGH.CKOPT** Production file **LOW.BODLEVEL** Brown-out detection at VCC=4.0 V 👋 **LOW.BODEN** ~ LOW.SUT_CKSEL Fuse Register Value HIGH 0x9D LOW 0x3F Copy to clipboard 🖌 Auto read Program Verify Read Verify after programming

Figure 8: fuse bits (Settings for crystal, Brown-Out detection and Watchdog)

Changing the fuse bits (with bootloader)

The internal RC oscillator (1MHz) is selected as the default clock source. Since this is too slow for DMX, the crystal (8MHz) has to be selected. This is done by adjusting the fuse bits as follows:

- 1. Select "Fuses" on the left side.
- 2. Read the current settings.
- 3. Change the bits according to figure 9 (0x9C; 0x3F).
- 4. Write back the fuse bits.

Tool Device	Interface 3515 v ISP v Ap	Device signature ply 0x1E9306 Read	Target Voltage	Ŷ
Interface settings Tool information Device information Oscillator calibration Memories Fuses Lock bits Production file	 ✓ HIGH.BOOTRST ✓ HIGH.CKOPT ✓ LOW.BODLEVEL ✓ LOW.BODEN ✓ LOW.SUT, CKSEL 	Flash size=256 words Boot addre n-out detection at VCC=4.0 V × Crystal/Resonator High Freq.; Start	ss=\$0F00 ~	
	Fuse Register Value HIGH 0x9C LOW 0x3F		Program	Copy to clipboard

Figure 9: fuse bits (Settings for crystal, bootloader, Brown-Out detection and Watchdog)

The bootloader can be accessed when starting the DMX Transceiver with all DIP switches off. Firmware updates are done with the OpenRDM software.

board.hex

This is a test file for the DMX Transceiver.

- 1. Download the project.
- 2. Transfer the hex file to the flash memory of your AVR.
- 3. Select the crystal by adjusting the fuse bits.

Test functions:

Flashing of the red LED indicates that the test file has been loaded into the flash memory.

All DIPs off:

A glow of the green LED indicates that it has been soldered correctly.

All DIPs on:

A glow of the green LED indicates that all DIP switches are soldered correctly.

Only DIP1 on:

The green LED lights up to indicate that the fuse bits have been adjusted.

Only DIP2 on:

If the green LED lights up, there is a signal at the DMX input.

It may be that D+ and D- are swapped.

Only DIP3 on:

If the green LED lights up, a correct DMX signal has been detected.

Only DIP4 on:

If the green LED is lit, a connected zero crossing detection is OK.